La microarquitectura RDNA 3, explicada: así es como AMD aspira a poner a NVIDIA contra las cuerdas

La microarquitectura RDNA 3, explicada: así es como AMD aspira a poner a NVIDIA contra las cuerdas

Las esperábamos con impaciencia, y ya casi están aquí. El próximo 13 de diciembre llegarán a las tiendas las primeras tarjetas gráficas pertenecientes a la familia Radeon RX 7000, y aterrizarán decididas a competir de tú a tú con las nuevas GeForce RTX 40 de NVIDIA. De hecho, al igual que estas últimas, estrenan microarquitectura.

RDNA 3 es la gran apuesta de AMD para competir en el mercado de los gráficos durante los próximos años. Como cabía esperar, esta revisión de la microarquitectura RDNA introduce innovaciones muy profundas que, sobre el papel, la desmarcan de sus predecesoras. Y, lo que es más importante, parece tener lo que necesita para plantear batalla a la microarquitectura Ada Lovelace de NVIDIA. Así se las gasta lo último en gráficos de AMD.

RDNA 3 nos promete un incremento del rendimiento por vatio del 54%

Para abrir boca merece la pena que indaguemos en la que sin duda es una de las características más interesantes de las GPU Radeon RX 7000: los chiplets. Y es que estos son los primeros procesadores gráficos de consumo que apuestan por distribuir su lógica en varios circuitos integrados físicamente independientes, aunque, lógicamente, están interconectados mediante enlaces de alto rendimiento.

Esta estrategia sobre el papel permite a AMD optimizar el diseño físico de sus nuevas GPU con el propósito de incrementar el rendimiento por milímetro cuadrado de oblea de silicio. Además, no todos los chiplets tienen por qué estar fabricados empleando la misma fotolitografía, de manera que cada uno de ellos se puede producir utilizando la tecnología de integración que encaja mejor con su cometido y que permite balancear su coste.

El motor gráfico se conoce como GCD, aglutina la lógica esencial de la GPU y está fabricado en el nodo de 5 nm de TSMC

En la diapositiva que publicamos debajo de estas líneas podemos ver que las GPU Radeon RX 7000 incorporan siete chiplets. El motor gráfico se conoce como GCD (Graphics Compute Die), aglutina la lógica esencial de la GPU y está fabricado en el nodo de 5 nm de TSMC. Por otro lado, la memoria caché o MCD (Memory Cache Die) está distribuida en los otros seis chiplets, y se produce empleando la fotolitografía de 6 nm de TSMC.

Esto significa, sencillamente, que estas GPU utilizan “solo” dos tipos de chiplets. No obstante, dentro del MCD no reside solo la caché de nivel 3 (a la que AMD llama Infinity Cache); con ella cohabitan los controladores de 2 x 32 bits vinculados a la administración de la memoria GDDR6. Un apunte importante: la distribución de esta caché en varios chiplets permite a AMD escalarla fácilmente. De hecho, la GPU Radeon RX 7900 XTX, que es la que podemos ver en la diapositiva, incorpora seis MCD activos, mientras que la Radeon RX 7900 XT tiene cinco unidades activas.

Rdna3 1

La siguiente diapositiva recoge algunas de las características más interesantes del procesador gráfico más avanzado que tiene AMD ahora mismo: el Radeon RX 7900 XTX. Su rendimiento máximo teórico al llevar a cabo operaciones FP32 asciende a 61 TFLOPS, el GCD y los MCD están conectados mediante enlaces capaces de alcanzar una velocidad de transferencia de 5,3 TB/s, y, además, esta GPU trabaja codo con codo con un mapa VRAM de 24 GB de tipo GDDR6. Un apunte más: este chip aglutina 58 000 millones de transistores.

Rdna3 2

Vamos ahora con la que sin duda es una de las grandes promesas que nos hace AMD de la mano de la introducción de la microarquitectura RDNA 3: las GPU que la utilizan nos entregan un incremento del rendimiento por vatio del 54% frente a sus predecesoras con microarquitectura RDNA 2. Es una mejora muy importante, y, por supuesto, comprobaremos este dato tan pronto como las nuevas Radeon RX 7900 XTX y XT caigan en nuestras manos. Esta optimización es posible gracias tanto a la implementación de la arquitectura como a los procesos fotolitográficos empleados en la fabricación de la GPU.

Rdna3 3

Como veremos más adelante, hay varias diferencias importantes entre algunas unidades funcionales de la GPU Radeon RX 7900 XTX y la ligeramente más modesta 7900 XT, pero hay otro apartado en el que estas tarjetas gráficas difieren: su memoria VRAM. La RX 7900 XTX incorpora 24 GB de tipo GDDR6, mientras que la RX 7900 XT apuesta por 20 GB GDDR6. A priori ambos subsistemas de memoria tienen la capacidad necesaria para lidiar con la resolución 2160p en los juegos de última hornada, y también para rendir bien en un escenario de creación de contenidos.

Rdna3 4

Como hemos comprobado más arriba, la utilización de chiplets permite a AMD decantarse por la litografía idónea para cada uno de ellos. El GCD es el más complejo, por lo que, a pesar de estar fabricado en el nodo de 5 nm, tiene una superficie de 300 mm². Los MCD están producidos en el nodo de 6 nm, como hemos visto, y cada uno de ellos tiene una superficie de 37 mm².

Rdna3 5

La caché de nivel 3 encapsulada en las GPU Radeon RX 7000 no es idéntica a la que incorporan los procesadores gráficos RDNA 2. Esta memoria Infinity Cache de segunda generación trabaja codo con codo con el controlador de memoria de 64 bits (2 x 32 bits) del que hemos hablado brevemente más arriba, y, según AMD, el enlace de alto rendimiento que la comunica con la memoria GDDR6 multiplica por hasta 2,7 la productividad del enlace implementado en la microarquitectura RDNA 2.

Rdna3 6

AMD nos promete una gran mejora en el renderizado mediante trazado de rayos

La unidad funcional básica de los procesadores gráficos de AMD son las unidades de computación o CU. Podemos contemplarlas como los pequeños ladrillos con los que está construida la GPU, de manera que el rendimiento del procesador gráfico depende en gran medida del trabajo que es capaz de llevar a cabo cada una de estas pequeñas unidades funcionales. En RDNA 3 todas las CU tienen una misma estructura y son fácilmente escalables. De hecho, como veremos más adelante, las GPU Radeon 7900 XTX y XT difieren en el número de estas unidades que incorporan.

Rdna3 7

La siguiente diapositiva nos invita a indagar en el interior de estas diminutas CU. Curiosamente, gracias al desarrollo de la fotolitografía incorporan un 165% más transistores por mm² que sus predecesoras en la microarquitectura RDNA 2. Este incremento nos permite intuir que su complejidad es también notablemente mayor. Un apunte importante: cada CU incorpora bloques funcionales específicos que han sido implementados para intervenir en la ejecución de los algoritmos de inteligencia artificial y trazado de rayos.

Rdna3 8

Una de las características más relevantes de los procesadores stream integrados en el interior de cada CU consiste en que son capaces de expedir en cada unidad de tiempo el doble de instrucciones que sus predecesores integrados en las CU de RDNA 2. Sobre el papel esta mejora de la microarquitectura debería tener un impacto muy profundo en el rendimiento de estas unidades, lo que nos recuerda que la productividad de la GPU no está condicionada únicamente por la frecuencia de reloj a la que trabaja o el número de CU que incorpora; la forma en que están implementadas estas unidades funcionales importa. Y mucho.

Rdna3 9

Cada CU integra dos unidades funcionales especializadas en la ejecución de las instrucciones utilizadas en los algoritmos de inteligencia artificial. En esta revisión de las CU los ingenieros de AMD han implementado nuevas instrucciones, y, además, según esta marca el rendimiento de cada acelerador de inteligencia artificial es hasta 2,7 veces más alto que el de las unidades equiparables de las CU de RDNA 2.

Rdna3 10

Al igual que los nuevos aceleradores de inteligencia artificial, las unidades funcionales de cada CU especializadas en la ejecución del código vinculado al trazado de rayos también pueden lidiar con nuevas instrucciones. Según AMD los aceleradores RT de segunda generación de sus nuevas CU nos entregan un rendimiento hasta un 50% más alto que sus predecesores, una característica muy importante que persigue ayudarles a rivalizar con el renderizado con trazado de rayos de las GeForce RTX 40. Será interesante comprobar qué familia de GPU rinde mejor en este escenario de uso.

Rdna3 11

Una baza de las nuevas tarjetas gráficas de AMD con la que no cuentan las GeForce RTX 40 de NVIDIA consiste en que las salidas de vídeo DisplayPort de las Radeon RX 7000 implementan la norma 2.1. Esta especificación permite a este enlace alcanzar una velocidad de transferencia de hasta 54 Gbps, así como trabajar con una profundidad de color de 12 bits por canal. Pero esto no es todo. También puede transportar señales 4K de hasta 480 Hz y 8K de hasta 165 Hz.

Rdna3 12

Un inciso antes de seguir adelante. En una GPU el front end tiene una responsabilidad diferente a la del back end o motor de ejecución. Muy a grandes rasgos y sin entrar en detalles complicados este último se encarga de ejecutar las instrucciones, mientras que el front end se responsabiliza de recogerlas desde la memoria caché y de decodificarlas para que posteriormente puedan ser procesadas por el motor de ejecución.

Una peculiaridad de los procesadores gráficos Radeon RX 7000 es que en ellos su front end no tiene por qué operar a la misma frecuencia de reloj a la que trabajan los sombreadores del back end. El primero puede operar a una frecuencia de hasta 2,5 GHz (es un 15% más alta que la del front end de RDNA 2), y el segundo a 2,3 GHz. Esta diferenciación permite a la GPU ahorrar energía, por lo que condiciona su rendimiento por vatio.

Rdna3 13

Con frecuencia los entusiastas del hardware gráfico damos a los teraflops de una GPU más importancia de la que realmente tienen. Al fin y al cabo solo es un dato más del conjunto de características que describe el rendimiento de un procesador gráfico. En cualquier caso, ahí va un dato para saciar nuestro apetito: la GPU Radeon RX 7900 XTX nos entrega un máximo de 61 TFLOPS en operaciones FP32, una cifra muy superior a los 23,65 TFLOPS del procesador gráfico Radeon RX 6950 XT basado en la arquitectura RDNA 2.

Rdna3 14

Tienen mucho en común, pero las Radeon RX 7900 XTX y XT son apuestas diferentes

La siguiente diapositiva recoge las características más relevantes de la que actualmente es la tarjeta gráfica más ambiciosa de AMD. La GPU Radeon RX 7900 XTX integra 96 CU, puede trabajar a una frecuencia de reloj máxima de 2,3 GHz y está respaldada por un mapa de memoria VRAM de tipo GDDR6 con una capacidad de 24 GB, como hemos visto más arriba. Según AMD el consumo típico de esta tarjeta gráfica asciende a 355 vatios, por lo que nos recomienda decantarnos por una fuente de alimentación de al menos 800 vatios.

Rdna3 16

La Radeon RX 7900 XT es solo ligerísimamente más modesta, si es que tiene sentido hablar de modestia en una tarjeta gráfica de gama alta. Integra 84 CU, puede trabajar hasta a 2 GHz, incorpora 20 GB GDDR6 y tiene un consumo típico de 300 vatios. Merece la pena que no pasemos por alto que el bus de memoria de la 7900 XTX tiene una anchura de 384 bits, mientras que el de la 7900 XT es de 320 bits. Será muy interesante comprobar cómo rinden estas dos tarjetas gráficas tan pronto como caigan en nuestras manos. Y, por el camino, comprobaremos cómo miden frente a las GeForce RTX 40 de NVIDIA.

Rdna3 17


La noticia La microarquitectura RDNA 3, explicada: así es como AMD aspira a poner a NVIDIA contra las cuerdas fue publicada originalmente en Xataka por Juan Carlos López .

Suscríbete a nuestro boletín

Únase a nuestros boletín y reciba las últimas noticias y artículos enviados directamente a su bandeja de entrada semanalmente.

Al ingresar su correo electrónico, acepta nuestros Política de privacidad .

También le puede interesar leer

Deja una respuesta